PU_QUANTILE
Description
Calculates the quantile of the specified source column for each element in the given target table.
Like the regular QUANTILE operator, the column can either be an INT, FLOAT or DATE column. The data type of the result is the same as the input column data type. The given quantile has to be an expression that results in a constant float number between 0 (same as PU_MIN) and 1.0 (same as PU_MAX).
Syntax
PU_QUANTILE ( target_table, source_table.column, quantile [, filter_expression] )
target_table: The table to which the aggregation result should be pulled. This can be:
a table from the data model. It needs to be, directly or indirectly, connected to the source_table, and there must be a 1:N relationship between the target_table and the source_table. Further documentation about join relationships can be found in Join functionality.
DOMAIN_TABLE or CONSTANT (see Pull Up Aggregation Table Options).
source_table.column: The column which should be aggregated for every row of the target_table.
quantile: Quantile expression that results in a constant FLOAT value between 0.0 and 1.0 (both inclusive).
filter_expression (optional): An optional filter expression to specify which values of the source_table.column should be taken into account for the aggregation.
NULL handling
If no value in the source table column exists for the element in the target table (either because all values of the source table are filtered out, or because no corresponding value exists in the first place), NULL will be returned. NULL values in the source table column are treated as if the row does not exist. The quantile parameter is not allowed to be NULL.
Examples
[1] Calculate the 0.5 quantile of the case table values for each company code. This produces the same result as PU_MEDIAN since QUANTILE(0.5) == MEDIAN(): | |||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||
|
[2] PU-functions can be used in a FILTER. In this example, the company codes are filtered such that the corresponding 0.5 quantile of the case table values is smaller than 300: | |||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||
|
[3] PU-functions can be used inside another aggregation function. In this example, the maximum value of all 0.5 quantiles of the case table values for each company code is calculated: | |||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||
|
[4] Calculate the 0.0 quantile of the case table values for each company code. This produces the same result as PU_MIN since QUANTILE(0.0) == MIN(): | |||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||
|
[5] Calculate the 1.0 quantile of the case table values for each company code. This produces the same result as PU_MAX since QUANTILE(1.0) == MAX(): | |||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||
|
[6] Calculate the 0.5 quantile of the case table values for each company code. Only consider cases with an ID larger than 2. This produces the same result as PU_MEDIAN since QUANTILE(0.5) == MEDIAN(): | |||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||
|
[7] Calculate the 0.5 quantile of the case table values for each company code. Only consider cases with an ID larger than 3. All case table values for companyCode '001' are filtered out, which means that in this case, NULL is returned. This produces the same result as PU_MEDIAN since QUANTILE(0.5) == MEDIAN(): | |||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||
|
[8] Calculate the 0.25 quantile of the case table values for each company code: | |||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||
|
[9] Example over three tables: For each entry in table B, calculate the 0.5 quantile of the values that are larger than 100 in table C. This produces the same result as PU_MEDIAN since QUANTILE(0.5) == MEDIAN(): Tables B and C do not have a direct connection, but are connected via table A: | ||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||
|
[10] Calculate the 0.5 quantile of the case table values using a division as the quantile parameter: | |||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||
|